Spatial Modeling of Natural Phenomena and Events with Artificial Neural Networks and GIS
نویسندگان
چکیده
Artificial neural networks (ANN) are used for statistical modeling of spatial events in geosciences. The advantage of this method is the ability of neural networks to represent complex interrelations and to be “able to learn” from known (spatial) events. The software advangeo® was developed to enable GIS users to apply neural network methods on raster geodata. This statistic modeling can be displayed in a user-friendly way within the ESRI ArcGIS environment. The complete workflow is documented by the software. This paper presents three pilot studies conducted to illustrate the possibilities of spatial predictions with the use of existing raster datasets, which described influencing factors and the selection of known events of the phenomenon to be modeled. These applications included (1) the prognosis of soil erosion patterns, (2) the prediction of mineral resources, and (3) vulnerability analysis for forest pests. Silke Noack Beak Consultants GmbH, Germany Andreas Barth Beak Consultants GmbH, Germany Alexey Irkhin Beak Consultants GmbH, Germany Evelyn Bennewitz Beak Consultants GmbH, Germany Frank Schmidt Beak Consultants GmbH, Germany
منابع مشابه
Application of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملRisk Assessment and Spatial Modeling of Heavy Metals Contamination in Topsoil around Venarj Manganese Mine by Artificial Neural Networks Method
Background and Objectives: The aim of the present study was to assess the probable heavy metals contamination in topsoil surrounding Venarj mine in Qom province using contamination indices and artificial neural networks method. Material and methods: in order to evaluate the contamination status around Venarj mine in Qom province, 70 soil samples were collected in an area of 22 Km2, and the to...
متن کاملAssessment of Spatial Multi-Criteria Decision-Making with Process of the Artificial Neural Networks Method to Site Selection of the Wastewater Treatment Plant (Case Study: Qeshm Island)
Wastewater treatment technology in the cyclic nature of the process that takes a long time. But man tries to rush to their needs with experience and understanding of the natural processes of interaction, and using technology to build their Industrial development is authorized. Sewage treatment reed have been born from the vision of man's increasing need to water daily decreases the natural reso...
متن کاملAssessment of Spatial Multi-Criteria Decision-Making with Process of the Artificial Neural Networks Method to Site Selection of the Wastewater Treatment Plant (Case Study: Qeshm Island)
Wastewater treatment technology in the cyclic nature of the process that takes a long time. But man tries to rush to their needs with experience and understanding of the natural processes of interaction, and using technology to build their Industrial development is authorized. Sewage treatment reed have been born from the vision of man's increasing need to water daily decreases the natural reso...
متن کاملIntegrated Artificial Neural Network Modeling and GIS for Identification of Important Factor on Groundwater Hydrochemistry (Fe-,Ca2+ and PO4-3)
Background & Aims of the Study: Groundwater resources are a crucial component of the ecosystem. Management and cleanup of contamination from groundwater resources requires a long term strategy and a huge amount of investments. Artificial neural networks (ANN) and Geographic Information System (GIS) can be useful in determining management strategies. To protect these valuable resourc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJAGR
دوره 3 شماره
صفحات -
تاریخ انتشار 2012